A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish.

نویسندگان

  • Elio Pizzo
  • Antonello Merlino
  • Mimmo Turano
  • Irene Russo Krauss
  • Francesca Coscia
  • Anna Zanfardino
  • Mario Varcamonti
  • Adriana Furia
  • Concetta Giancola
  • Lelio Mazzarella
  • Filomena Sica
  • Giuseppe D'Alessio
چکیده

Recently, extracellular RNases of the RNase A superfamily, with the characteristic CKxxNTF sequence signature, have been identified in fish. This has led to the recognition that these RNases are present in the whole vertebrate subphylum. In fact, they comprise the only enzyme family unique to vertebrates. Four RNases from zebrafish (Danio rerio) have been previously reported and have a very low RNase activity; some of these are endowed, like human angiogenin, with powerful angiogenic and bactericidal activities. In the present paper, we report the three-dimensional structure, the thermodynamic behaviour and the biological properties of a novel zebrafish RNase, ZF-RNase-5. The investigation of its structural and functional properties, extended to all other subfamily members, provides an inclusive description of the whole zebrafish RNase subfamily.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily.

Angiogenin is a 14.4-kDa human plasma protein with 65% homology to RNase A that retains the key active site residues and three of the four RNase A disulfide bonds. We demonstrate that recombinant angiogenin functions as a cytotoxic tRNA-specific RNase in cell-free lysates and when injected into Xenopus oocytes. Inhibition of protein synthesis by angiogenin correlates with degradation of endogen...

متن کامل

RNase A ribonucleases and host defense: an evolving story.

RNase A (bovine pancreatic RNase) is the founding member an extensive family of divergent proteins that share specific elements of sequence homology, a unique disulfide-bonded tertiary structure, and the ability to hydrolyze polymeric RNA. Among the more intriguing and perhaps counterintuitive findings, at the current state of the art, the connection between RNase activity and characterized hos...

متن کامل

The cellular uptake of angiogenin, an angiogenic and neurotrophic factor is through multiple pathways and largely dynamin independent

Angiogenin (ANG), a member of the RNase superfamily (also known as RNase 5) has neurotrophic, neuroprotective and angiogenic activities. Recently it has also been shown to be important in stem cell homeostasis. Mutations in ANG are associated with neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Fronto-temporal dementia (FTD). ANG is a secreted protein which is taken u...

متن کامل

Ribonucleolytic activity of angiogenin: essential histidine, lysine, and arginine residues.

The homology of angiogenin and pancreatic RNase A provides a compelling reason to systematically compare the characteristics of the two proteins using the chemical modification approaches that proved essential to understanding the action of RNase. Reagents specific for histidine, lysine, and arginine markedly decrease the ribonucleolytic activity of angiogenin, much as has been observed for RNa...

متن کامل

A molecular dynamics study based post facto free energy analysis of the binding of bovine angiogenin with UMP and CMP ligands.

Angiogenin is a protein belonging to the superfamily of RNase A. The RNase activity of this protein is essential for its angiogenic activity. Although members of the RNase A family carry out RNase activity, they differ markedly in their strength and specificity. In this paper, we address the problem of higher specificity of angiogenin towards cytosine against uracil in the first base binding po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 433 2  شماره 

صفحات  -

تاریخ انتشار 2011